Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos.
نویسندگان
چکیده
Asymmetric cell divisions produce two sibling cells with distinct fates, providing an important means of generating cell diversity in developing embryos. Many examples of such cell divisions have been described, but so far only a limited number of the underlying mechanisms have been elucidated. Here, we have uncovered a novel mechanism controlling an asymmetric cell division in the ascidian embryo. This division produces one notochord and one neural precursor. Differential activation of extracellular-signal-regulated kinase (ERK) between the sibling cells determines their distinct fates, with ERK activation promoting notochord fate. We first demonstrate that the segregation of notochord and neural fates is an autonomous property of the mother cell and that the mother cell acquires this functional polarity via interactions with neighbouring ectoderm precursors. We show that these cellular interactions are mediated by the ephrin-Eph signalling system, previously implicated in controlling cell movement and adhesion. Disruption of contacts with the signalling cells or inhibition of the ephrin-Eph signal results in the symmetric division of the mother cell, generating two notochord precursors. Finally, we demonstrate that the ephrin-Eph signal acts via attenuation of ERK activation in the neural-fated daughter cell. We propose a model whereby directional ephrin-Eph signals functionally polarise the notochord/neural mother cell, leading to asymmetric modulation of the FGF-Ras-ERK pathway between the daughter cells and, thus, to their differential fate specification.
منابع مشابه
Eph Regulates Dorsoventral Asymmetry of the Notochord Plate and Convergent Extension-Mediated Notochord Formation
BACKGROUND The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and estab...
متن کاملTail morphogenesis in the ascidian, Ciona intestinalis, requires cooperation between notochord and muscle.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in not...
متن کاملEphrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo.
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which f...
متن کاملCell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors.
Asymmetric cell division plays a fundamental role in generating various types of embryonic cell. In ascidian embryos, asymmetric cell divisions occur in the vegetal hemisphere in a manner similar to those found in Caenorhabditis elegans. Early divisions in embryos of both species involve inductive events on a single mother cell that result in production of daughters with different cell fates. H...
متن کاملA signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos.
The notochord is one of the defining features of chordates. The ascidian notochord is a rod like structure consisting of a single row of 40 cells. The anterior 32 ;primary' notochord cells arise from the A-line (anterior vegetal) blastomeres of the eight-cell stage embryo, whereas the posterior 8 ;secondary' notochord cells arise from the B-line (posterior vegetal) blastomeres of the eight-cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 134 8 شماره
صفحات -
تاریخ انتشار 2007